大家好,今天本篇文章就来给大家分享tanx求导,以及对应的知识和见解,内容偏长哪个,大家要耐心看完哦,希望对各位有所帮助,不要忘了收藏本站喔。
tanX的导数是多少
(tanx)'= 1/cos²x=sec²x=1+tan²x,求导过程如图所示
拓展资料:
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
tan的导数是什么?
tan的导数是sec^2x。
可以将tanx转化成sinx/cosx来上下推导,tanx=sinx/cosx,那么用除法求导法则来求导(f/g)′=(f′g-g′f)/g^2,即上导乘下减上乘下导,除以下的平方,tanx的导数求导套用除法求导法则就能求解。
其具体过程是:(tanx)′=(sinx/cosx)′=[(sinx)′cosx-sinx·(cosx)′]/cos^2x=[cos^2x+sin^2x]/cos^2x=1/cos^2x=sec^2x。即tanx求导结果为sec^2x。
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
tanx求导的结果是什么?
tanx求导的结果是sec²x.
可把tanx化为sinx/cosx进行推导
(tanx)'
=(sinx/cosx)'
=[(sinx)'cosx-sinx(cosx)']/cos²x
=(cos²x+sin²x)/cos²x
=1/cos²x=sec²x
拓展资料:
导数公式
编辑
1.C'=0(C为常数);
2.(Xn)'=nX(n-1) (n∈R);
3.(sinX)'=cosX;
4.(cosX)'=-sinX;
5.(aX)'=aXIna (ln为自然对数);
6.(logaX)'=(1/X)logae=1/(Xlna) (a0,且a≠1);
7.(tanX)'=1/(cosX)2=(secX)2
8.(cotX)'=-1/(sinX)2=-(cscX)2
9.(secX)'=tanX secX;
10.(cscX)'=-cotX cscX;
注意事项
1.不是所有的函数都可以求导;
2.可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
参考资料:百度百科,求导
tanx求导是多少?谢谢
tanx求导的结果是sec²x.
可把tanx化为sinx/cosx进行推导
(tanx)'
=(sinx/cosx)'
=[(sinx)'cosx-sinx(cosx)']/cos²x
=(cos²x+sin²x)/cos²x
=1/cos²x=sec²x
拓展资料:
导数公式
编辑
1.C'=0(C为常数);
2.(Xn)'=nX(n-1) (n∈R);
3.(sinX)'=cosX;
4.(cosX)'=-sinX;
5.(aX)'=aXIna (ln为自然对数);
6.(logaX)'=(1/X)logae=1/(Xlna) (a0,且a≠1);
7.(tanX)'=1/(cosX)2=(secX)2
8.(cotX)'=-1/(sinX)2=-(cscX)2
9.(secX)'=tanX secX;
10.(cscX)'=-cotX cscX;
注意事项
1.不是所有的函数都可以求导;
2.可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
参考资料:百度百科,求导
tanx的导数
tanx的导数是(secx)^2。计算tanx的导数时,可以将tanx化为sinx/cosx进行推导,其计算过程为:[sinx/cosx]'=[(sinx)'cosx-sinx(cosx)']/(cosx)^2=(secx)^2。
tanx求导的完整计算过程
(f/g)'=(f'g-g'f)/g^2
[sinx/cosx]'=[(sinx)'cosx-sinx(cosx)']/(cosx)^2
=[cosx*cosx+sinx*sinx]/(cosx)^2
=1/(cosx)^2
=(secx)^2
导数是什么
导数是函数的局部性质,又名微商,当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
文章到此结束,希望可以帮助到大家。